

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

salt-confd

Lightweight Salt package à la confd [https://github.com/kelseyhightower/confd]
management of local application configuration files.

Why

Please note that the intent of this software package is not to compete against
confd or other popular equivalents; it was born purely out of my personal
preference / bias of using Salt for managing files (and others). Salt is
typically at the opposite end of “lightweight” and this package aims to
alleviate this, however it still cannot get better than confd - from this
perspective. Alas, it’s written in Python (please let’s not have this discussion
over here 😄).

I see it rather as a trade-off: while confd is only a 5MB binary, I haven’t
managed yet to have this installation (together with dependencies) under 76MB.
That said, if you already have Salt installed, you might find this helpful, as
all you’ve got to do is install this package, which in this case would bring a
tiny overhead. Otherwise, I’d invite you to evaluate: with salt-confd you
can do a lot more than the original confd (see also some notes and examples
below), though the decision if yours to balance your requirements and goals vs.
the additional overhead.

In short, here’s why I took this approach:

	Why not? It’s fun.

	I like Salt, and it offers a variety of well-known templating languages to
manage the files, including Jinja, Mako, Cheetah, or even pure Python - and
others. In other words, I find that I prefer to use something I’m already
comfortable with, particularly in environments where Salt is already a
requirement.

	What I find missing in confd is the possibility to manage the local config
files based on more environment parameters - e.g., have idempotent templates
that can be used across a number of distributions (as in opposite to having
separate files / directory tree / or even repositories for different
base operating system distribution); with Salt, this can be very easily done
using the Grains.

	Not only local templates: it often happens to have your template on a server
elsewhere; at the end of the day, you need the resulting config file, not its
source.
With Salt Confd, you can use source files directly available via HTTP, S3,
SWIFT, SVN, or FTP.

	Salt covers a large variety of backends to fetch the data from (including
Redis, Vault, Consul, etcd, and so on).

	Salt is easily extensible (not by forking the project), but in
your own environment by simply putting the module for your backend of choice
under a specific path.

Or, to put this differently, if you need a different backend, or an additional
feature, you won’t need to fork the entire project and re-compile it; instead,
you can preserve the existing usage and just provide it with your own code
implementing the feature or backend you need.

	For monitoring/logging purposes, you might want to send the results somewhere,
or simply have some post-checks / validate the output.

Installation

$ pip install salt-confd

Usage

In the spirit of the original confd, I tried to preserve the CLI syntax and the
general usage. Under the confdir directory (defaulting to
/etc/salt/confd), you’d need to have the following structure:

$ tree /etc/salt/confd
.
|-- conf.d/
| `-- test.sls
`-- templates/
 `-- test.conf

That is, a subdirectory named conf.d having one or more files. The file
extension doesn’t matter, as the content is going to be interpreted as SLS, by
default rendered as Jinja + YAML. This format could be however changed, by
adding a hashbang at the top of the file, as detailed in this
document [https://docs.saltstack.com/en/latest/ref/renderers/#overriding-the-default-renderer].

For example, the contents of the test.sls file above:

src: test.conf
dest: /tmp/test

Where test.conf is the template file from the templates/ directory:

Hello world!

I'm running on {{ grains.osfullname }} {{ grains.osrelease }}, and I have the
following IPv6 addresses:

{%- for addr in grains.ipv6 %}
- {{ addr }}
{%- endfor %}

With these two simple files, running salt-confd:

$ salt-confd
local:

 ID: /tmp/test
 Function: file.managed
 Result: True
 Comment: File /tmp/test updated
 Started: 12:20:54.781405
 Duration: 26.337 ms
 Changes:

 diff:

 +++
 @@ -0,0 +1,7 @@
 +Hello world!
 +
 +I'm running on Ubuntu 18.04, and I have the
 +following IPv6 addresses:
 +- ::1
 +- fe80::42:57ff:fe55:2afc
 +- fe80::9a9:9f9e:9a2c:6bf1

Summary for local

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 26.337 ms

You can display the previous return as JSON, which could be helpful in
combination with jq to validate the output, e.g.,

$ salt-confd --out=json
{
 "local": {
 "file_|-/tmp/test_|-/tmp/test_|-managed": {
 "changes": {
 "diff": "--- \n+++ \n@@ -0,0 +1,7 @@\n+Hello world!\n+\n+I'm running on Ubuntu 18.04, and I have the\n+following IPv6 addresses:\n+- ::1\n+- fe80::42:57ff:fe55:2afc\n+- fe80::9a9:9f9e:9a2c:6bf1\n"
 },
 "pchanges": {},
 "comment": "File /tmp/test updated",
 "name": "/tmp/test",
 "result": true,
 "__sls__": "confd",
 "__run_num__": 0,
 "start_time": "13:17:12.342262",
 "duration": 26.274,
 "__id__": "/tmp/test"
 }
 }
}

Additionally, if you’d like to log in a Slack (or other places) the changes
salt-confd is applying, you can execute with:

$ salt-confd --return slack

After setting the details into the configuration file (by default
/etc/salt/confd.yml), as
documented [https://docs.saltstack.com/en/latest/ref/returners/all/salt.returners.slack_returner.html],
e.g.,

/etc/salt/confd.yml

slack.channel: salt-confd
slack.api_key: <api key>
slack.username: salt-confd
slack.as_user: salt-confd
slack.yaml_format: true

To always send the output to Slack or where you’d like to monitor these changes,
add the following line to /etc/salt/confd.yml:

returner: slack

In brief, there are 3 steps to follow:

	Install salt-confd.

	Put the files as mentioned above (i.e., as you’d do when using the original
confd).

	Run salt-confd.

What is this thing

This plugin is simply a wrapper executing various Salt internal code, with
bespoken configuration options and customised calls, in such a way to facilitate
the management of the configuration files to provide a more straight forward
experience.

salt-confd

Lightweight Salt package à la confd [https://github.com/kelseyhightower/confd]
management of local application configuration files.

Why

Please note that the intent of this software package is not to compete against
confd or other popular equivalents; it was born purely out of my personal
preference / bias of using Salt for managing files (and others). Salt is
typically at the opposite end of “lightweight” and this package aims to
alleviate this, however it still cannot get better than confd - from this
perspective. Alas, it’s written in Python (please let’s not have this discussion
over here 😄).

In short, here’s why I took this approach:

	Why not? It’s fun.

	I like Salt, and it offers a variety of well-known templating languages to
manage the files, including Jinja, Mako, Cheetah, or even pure Python - and
others. In other words, I find that I prefer to use something I’m already
comfortable with, particularly in environments where Salt is already a
requirement.

	What I find missing in confd is the possibility to manage the local config
files based on more environment parameters - e.g., have idempotent templates
that can be used across a number of distributions (as in opposite to having
separate files / directory tree / or even repositories for different
base operating system distribution); with Salt, this can be very easily done
using the Grains.

	Not only local templates: it often happens to have your template on a server
elsewhere; at the end of the day, you need the resulting config file, not its
source.
With Salt Confd, you can use source files directly available via HTTP, S3,
SWIFT, SVN, or FTP.

	Salt covers a large variety of backends to fetch the data from (including
Redis, Vault, Consul, etcd, and so on).

	Salt is easily extensible (not by forking the project), but in
your own environment by simply putting the module for your backend of choice
under a specific path.

Or, to put this differently, if you need a different backend, or an additional
feature, you won’t need to fork the entire project and re-compile it; instead,
you can preserve the existing usage and just provide it with your own code
implementing the feature or backend you need.

Installation

$ pip install salt-confd

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

